Reconstructing an Analytic Function Using Truncated Lagrange Polynomials

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cryptanalysis of an Authentication Scheme Using Truncated Polynomials

An attack on a recently proposed authentication scheme of Shpilrain and Ushakov is presented. The public information allows the derivation of a system of polynomial equations for the secret key bits. Our attack uses simple elimination techniques to distill linear equations. For the proposed parameter choice, the attack often finds secret keys or alternative secret keys within minutes with moder...

متن کامل

positive lagrange polynomials

in this paper we demonstrate the existence of a set of polynomials pi , 1 i  n , which arepositive semi-definite on an interval [a , b] and satisfy, partially, the conditions of polynomials found in thelagrange interpolation process. in other words, if a  a1  an  b is a given finite sequence of realnumbers, then pi (a j )  ij (ij is the kronecker delta symbol ) ; moreover, the sum of ...

متن کامل

Stieltjes polynomials and Lagrange interpolation

Bounds are proved for the Stieltjes polynomial En+1, and lower bounds are proved for the distances of consecutive zeros of the Stieltjes polynomials and the Legendre polynomials Pn. This sharpens a known interlacing result of Szegö. As a byproduct, bounds are obtained for the Geronimus polynomials Gn. Applying these results, convergence theorems are proved for the Lagrange interpolation process...

متن کامل

Lagrange polynomials of lower sets

A lower set of nodes is a subset of a grid that can be indexed by a lower set of indices. In order to apply the Lagrange interpolation formula, it is convenient to express the Lagrange fundamental polynomials as sums of few terms. We present such a formula for the Lagrange interpolation formula in two variables. In the general multidimensional case, we express the Lagrange fundamental polynomia...

متن کامل

Bridging Bernstein and Lagrange polynomials

Linear combinations of iterates of Bernstein polynomials exponentially converging to the Lagrange interpolating polynomial are given. The results are applied in CAGD to get an exponentially fast weighted progressive iterative approximation technique to fit data with finer and finer precision. AMS subject classifications: 41A25, 41A36

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Zeitschrift für Analysis und ihre Anwendungen

سال: 2003

ISSN: 0232-2064

DOI: 10.4171/zaa/1180